
1

CS 188: Artificial Intelligence
Spring 2010

Lecture 24: Perceptrons and More!

4/22/2010

Pieter Abbeel – UC Berkeley

Slides adapted from Dan Klein

Announcements

� W7 due tonight [this is your last written for the
semester!]

� Project 5 out tonight --- Classification!

Announcements (2)

� Contest logistics

� Up and running!

� Tournaments every night

� Final tournament: We will use submissions received by Thursday

May 6, 11pm.

� Contest extra credit through bonus points on final exam
[all based on final ranking]

� 0.5pt for beating Staff

� 0.5pt for beating Fa09-TeamA (top 5), Fa09-TeamB (top 10),
and Fa09-TeamC (top 20) from last semester [total of 1.5pts to

be earned]

� 1pt for being 3rd

� 2pts for being 2nd

� 3pts for being 1st

Where are we and what’s left?

� So far:

� Search

� CSPs

� Adversarial search

� MDPs and RL

� Bayes nets, probabilistic inference

� Machine learning

� Today: Machine Learning part III:

� kNN and kernels

� Tuesday: Applications in Robotics

� Thursday: Applications in Vision and Language

+ Conclusion + Where to learn more

Classification

Hello,

Do you want free printr

cartriges? Why pay more

when you can get them

ABSOLUTELY FREE! Just

free : 2

YOUR_NAME : 0

MISSPELLED : 2

FROM_FRIEND : 0

...

SPAM
or
+

PIXEL-7,12 : 1

PIXEL-7,13 : 0

...

NUM_LOOPS : 1

...

“2”

Classification overview
� Naïve Bayes:

� Builds a model training data

� Gives prediction probabilities

� Strong assumptions about feature independence

� One pass through data (counting)

� Perceptron:
� Makes less assumptions about data

� Mistake-driven learning

� Multiple passes through data (prediction)

� Often more accurate

� SVM:

� Properties similar to perceptron

� Convex optimization formulation

� Nearest-Neighbor:

� Non-parametric: more expressive with more training data

� Kernels
� Efficient way to make linear learning architectures into nonlinear ones

2

Case-Based Reasoning

� Similarity for classification
� Case-based reasoning

� Predict an instance’s label using
similar instances

� Nearest-neighbor classification
� 1-NN: copy the label of the most

similar data point

� K-NN: let the k nearest neighbors vote
(have to devise a weighting scheme)

� Key issue: how to define similarity
� Trade-off:

� Small k gives relevant neighbors
� Large k gives smoother functions

� Sound familiar?

� [Demo]

http://www.cs.cmu.edu/~zhuxj/courseproject/knndemo/KNN.html

10

Parametric / Non-parametric

� Parametric models:

� Fixed set of parameters

� More data means better settings

� Non-parametric models:

� Complexity of the classifier increases with data

� Better in the limit, often worse in the non-limit

� (K)NN is non-parametric
Truth

2 Examples 10 Examples 100 Examples 10000 Examples

11

Nearest-Neighbor Classification

� Nearest neighbor for digits:
� Take new image

� Compare to all training images
� Assign based on closest example

� Encoding: image is vector of intensities:

� What’s the similarity function?
� Dot product of two images vectors?

� Usually normalize vectors so ||x|| = 1

� min = 0 (when?), max = 1 (when?) 12

Basic Similarity

� Many similarities based on feature dot products:

� If features are just the pixels:

� Note: not all similarities are of this form
13

Invariant Metrics

� Better distances use knowledge about vision

� Invariant metrics:

� Similarities are invariant under certain transformations

� Rotation, scaling, translation, stroke-thickness…

� E.g:

� 16 x 16 = 256 pixels; a point in 256-dim space

� Small similarity in R256 (why?)

� Variety of invariant metrics in literature

� Viable alternative: transform training examples

such that training set includes all variations
14

Classification overview

� Naïve Bayes

� Perceptron

� SVM

� Nearest-Neighbor

� Kernels

3

A Tale of Two Approaches …

� Nearest neighbor-like approaches

� Can use fancy similarity functions

� Don’t actually get to do explicit learning

� Perceptron-like approaches

� Explicit training to reduce empirical error

� Can’t use fancy similarity, only linear

� Or can they? Let’s find out!

19

Perceptron Weights

� What is the final value of a weight wy of a perceptron?

� Can it be any real vector?

� No! It’s built by adding up inputs.

� Can reconstruct weight vectors (the primal representation)
from update counts (the dual representation)

20

Dual Perceptron

� How to classify a new example x?

� If someone tells us the value of K for each pair of
examples, never need to build the weight vectors! 21

Dual Perceptron

� Start with zero counts (alpha)

� Pick up training instances one by one

� Try to classify x
n
,

� If correct, no change!

� If wrong: lower count of wrong class (for this instance),
raise score of right class (for this instance)

22

Kernelized Perceptron

� If we had a black box (kernel) which told us the dot
product of two examples x and y:

� Could work entirely with the dual representation

� No need to ever take dot products (“kernel trick”)

� Like nearest neighbor – work with black-box similarities

� Downside: slow if many examples get nonzero alpha
23

Kernels: Who Cares?

� So far: a very strange way of doing a very simple
calculation

� “Kernel trick”: we can substitute any* similarity
function in place of the dot product

� Lets us learn new kinds of hypothesis

* Fine print: if your kernel doesn’t satisfy certain
technical requirements, lots of proofs break.

E.g. convergence, mistake bounds. In practice,
illegal kernels sometimes work (but not always).

25

4

Non-Linear Separators

� Data that is linearly separable (with some noise) works out great:

� But what are we going to do if the dataset is just too hard?

� How about… mapping data to a higher-dimensional space:

0

0

0

x2

x

x

x

This and next few slides adapted from Ray Mooney, UT

26

Non-Linear Separators

� General idea: the original feature space can always be
mapped to some higher-dimensional feature space
where the training set is separable:

Φ: x→ φ(x)

27

Some Kernels

� Kernels implicitly map original vectors to higher
dimensional spaces, take the dot product there, and
hand the result back

� Linear kernel:

� Quadratic kernel:

28

φ(x) = x

For x ∈ ℜ3 :

φ(x) = [x1x1 x1x2 x1x3 x2x1 x2x2 x2x3 x3x1 x3x2 x3x3
√

2x1
√

2x2
√

2x3 1]

Some Kernels (2)

� Polynomial kernel:

For x ∈ ℜ3 :

φ(x) = [xd1 x
d

2 x
d

3

√
dxd−1

1
x2
√
dxd−1

1
x3 . . .

√
dx1

√
dx2

√
dx3 1]

For x ∈ ℜn the d-order polynomial kernel’s implicit feature space is
(
n+d

d

)

dimensional.
By contrast, computing the kernel directly only requires O(n) time.

Some Kernels (3)

� Kernels implicitly map original vectors to higher
dimensional spaces, take the dot product there, and
hand the result back

� Radial Basis Function (or Gaussian) Kernel: infinite
dimensional representation

� Discrete kernels: e.g. string kernels
� Features: all possible strings up to some length
� To compute kernel: don’t need to enumerate all substrings for

each word, but only need to find strings appearing in both x and
x’

30

Why Kernels?

� Can’t you just add these features on your own (e.g. add
all pairs of features instead of using the quadratic
kernel)?
� Yes, in principle, just compute them

� No need to modify any algorithms

� But, number of features can get large (or infinite)

� Kernels let us compute with these features implicitly
� Example: implicit dot product in polynomial, Gaussian and string

kernel takes much less space and time per dot product

� Of course, there’s the cost for using the pure dual algorithms:
you need to compute the similarity to every training datum

5

Recap: Classification

� Classification systems:
� Supervised learning

� Make a prediction given
evidence

� We’ve seen several
methods for this

� Useful when you have
labeled data

33

Where are we and what’s left?

� So far foundations: Search, CSPs, Adversarial search, MDPs

and RL, Bayes nets and probabilistic inference, Machine learning

� Tuesday: Applications in Robotics

� Thursday: Applications in Vision and Language +
Conclusion + Where/How to learn more

